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Expressions are obtained for calculating the normal derivative of the solution of the Dirichlet problem 

and the tangential derivative of the solution of the Neumann problem for Poisson’s equation in terms 

of the parameters of the one-to-one and conformal mapping of the plane region into the unit circle. 

1. FUNDAMENTAL EQUATIONS 

Suppose u is the solution of Poisson’s equation Au = -1 in the plane region D, which on the 
boundary r of this region satisfies either the Dirichlet conditions uI,=O (problem l), or 
the Neumann conditions ih/& Ir= A (problem 2), where alan is the derivative with respect to 
the output normal to r. 

We know that the solution of problem 2 can be found, apart from a constant, while 
the constant A =I D I / I r I, where IDI is the area of the region and lrl is the perimeter of the 
boundary of r. 

The purpose of the present paper is to obtain expressions for calculating the normal 
derivative of the solution of problem 1 and the tangential derivative of the solution of problem 
2 on the boundary. 

We know that the solution of problem 1 is proportional to the stress function in the problem 
of the torsion of elastic prismatic rods, the cross-section of which is the region D, while the 
normal derivative on the boundary is proportional to the shear stress [l]. Estimates of u, are 
given in a number of papers ([2, 31, etc.). However, it is not only the values of the function 
U,,(S) (s is the natural parameter on r) that are important, but also the arrangement of the 
maxima of this function (the dangerous points). Saint Venant obtained analytic solutions of 
problem 1 for a large number of regions (an ellipse, a right triangle, etc.). For all these regions 
the dangerous points are situated at the points r that are least distant from the centre of 
symmetry of the region. It was shown in [4] that with certain additional assumptions regarding 
the boundary r, u,, reaches extrema only at points lying on the axes of symmetry of the region 
D (to be sure, if there are two such axes). Below we obtain an expression for u, in terms of the 
coefficients of the conformal mapping of the region D into the unit circle, ‘which enables the 
list of regions for which dangerous points can be found explicitly to be extended. 

Problem 2 is the linearized static problem of the form of the free surface of a liquid in a 
cylindrical capillary, the cross-section of which is the region D, due to the action of the surface- 
tension forces. Knowing the derivative of U(S) on r we can obtain complete information on the 

tPrikl. Mat. Mekk. Vol. 58, No. 3, pp. 172-177, 1994. 

551 



552 A. A. Kosmodem’yanskii Jr 

oscillations of the solution itself on the boundary and, in particular, obtain the points I- at 
which the liquid rises to the greatest height. 

We will first obtain expressions which we will devote the rest of the paper to rnvestigatmg. 
We will use Green’s formula 

Theorem 1. Suppose I&, y) is the solution of problem 1. Suppose further that (u,,, ,,I is a 
family of functions, harmonic in the region I). possessing the following properties: u,~ ,I 4 0 in 
the region D , u,,,, 

Then 
>O on the arc f\(s-h, s+/z) and j,.u3 ,&= 1. 

where 

Proof. Putting f = I( and g = u,,,! in (1.1). and using the formulation of problem 1, we obtain 

t, 1.3) 

Now applying the theorem of the mean to the contour integral and using the properties of 
the family (u,,}, we can conclude that it is equal to U,(S)@ E (s-k, s+h)). 

Passing to the limit as h -+ 0 in (1.3). we obtain (1.2). 

T/zeorem 2. Suppose U(X, y) is the solution of problem 2. Suppose further that (I_$,) is a 
family of functions, harmonic in the region I>, such that the functions of the family (u,,,,) are 
conjugate to them. Then 

(1.4) 

where 

(the meaning of the argument sO will become clear in the next section). 

Proof. Putting f = II and g = I&, in (1.1) and using the formulation of problem 2. we obtain 

Converting the last integral in (1.5), using the Cauchy-Riemann conditions and integrating 
by parts, Eq. (1.5) takes the form 

(1.6) 

Further, as in the proof of Theorem 1, WC use the properties of the family (u,,,) and pass to 
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the limit in (1.6) as h + 0. We obtain Eq. (1.4). 

2. CALCULATION OF THE NORMAL DERIVATIVE IN PROBLEM 1 USING SERIES 

Harmonic functions occur in (1.2) and (1.4), and hence it is natural to calculate the boundary 
derivatives using series which realize a conformal mapping of the region into the unit circle. 
We will show how such calculations can be carried out in problem 1. 

Suppose z=n+iy and [=c+iq=re”. Suppose the function z = f(C,) carries out a one-to-one 
conformal mapping of region D into the unit circle B(I C, I c 1) 

r = a,c + uzc2+ . . . f anp + .** SAD (2.1) 

Everywhere henceforth we will assume that the following numerical series converges 

latl + 2lazl + . . . + nla,l + . . . < +oo (2.2) 

We will take as the elements of the family (u,,) the solutions of the Dirichlet problem with 
the following boundary conditions: v,, = 1/(2/z) on the arc (s-h, s +h) and v,, = 0 on the 
remaining part of I. Note that the functions w(c) = u,,(f(<)) and w*(c) = u:,,(f([)) are harmon- 
ic in the circle B, and the function w(e”) is equal to zero outside the arc of the circle (so -E, 
s, + E) and equal to l/(211) on this arc. (The arc (s, -E. s0 + E) is the inverse image of the-arc 
(s -It, s + h) in mapping (2.1).) 

It follows from elementary calculations that 

w(r*cp) 
& lit rk sin kE =-+- -cosk(cp-s()) 

21th 2ti k=l k 

w*(r,cp) = -1: 
rk sin k& 
-sink(cp-se) 

Xkk,I k 

(2.3) 

(2.4) 

Note also that it follows from the convergence of series (2.2) that the following limit exists 

li.iof = C(s,) =lf’(e& )I-’ (2.5) 

Theorem 3. Suppose that a,, =lu, leien, and Cl,,, = 8, -8,. in (2.1). Then 

where 

s, = 2 Ilu,12; s, = 2 121u,12 
I=I I=1 

s, =2g x nlu,llu,lcos(el, +(I-n)s,) 
I=1 n<l 

s, =25 z di~,iia,icOs(e, +(~-fl)~,) 
I=1 n<l 

Proof. It follows from Theorem 1 that it is sufficient to evaluate the integral 

(2.7) 
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and then pass to the limit as /I + 0. 
We will use the well-known method from [6] in the calculation. From (2.1) wc obtain 

lf’(C)12 = f’(C)f’(C> = : 2 ?2la,a,~“-‘~~-’ 
n=l /=I 

We substitute (2.3) and (2.8) into (2.7) and then use the equalities 

cos&(cp_~o)=~(e”(‘-“O)+e-i~(‘P-~O)); a, =la,p” 

and the conditions of orthogonality. Then 

x&la 
n 

Ilull ,n+l+k-‘eie,ei(n-l)drd~ = 

sink& ie,l n+~+k-~ x-e r (e- 
ik.soei(n-l+k)cp + e 

2k 
iksoei(n-l-kh )drdq = 

12.8) 

(2.9) 

We now pass to the limit in (2.9) as /r + 0. It follows from the convergence of series (2.2) 
that this limit exists and is equal to 

On the other hand, it follows from (2.5). (2.8) and Euler’s formulae that 

C(Q) =lf’(e’“O)I-’ = (S3 + S4)-K (2.11) 

Substituting (2.11) into (2.10) we obtain (2.6). 
Formula (2.6) enables us to calculate the normal derivative of the solution of problem I at 

any point of the boundary r. However, it is not possible to solve the problem of the extrema of 
n,,(s) completely using this formula. On the other hand. it is possible to obtain the position of 
these extrema in cases that differ from the classical ones. 

lharnple. Suppose that 

A0 = ar 6 + a26* 

in (2.1). The condition for the function f(c) to be one-sheeted has the form I a, I i(2 I cr, I) > I. For 
the quantities S, in (2.6) we obtain 

s1 = lull2 + 2la#, s2 = 2la~la2lcos(e2, + so) 

s3 = lU,i2 + &Z2i2, s4 = 2s~ 
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It is easy to obtain the extrema of the function III,,(S) I. It reaches its maxima at points on the 
boundary I such that sin@,, +s,) =O, and minima at points such that COS(C$~ +s,,) = 
- I a, I / I a, I. The greatest maximum is reached at the point where cos(c),, + so) = -1 (a dangerous 
point). The greatest value of the modulus of the normal derivative is 

lu*l, = ‘/2(la,l2 + 2142 - 2luilla~l)/(lail - 2la21) 

while the least value is I u, l,,+=l a, I / 2. 
A formula similar to (2.6) can also be obtained for u(s) in problem 2. It is merely necessary, 

when evaluating the double integral in (1.4), to use function (2.4), and when evaluating the 
contour integral one must assume the expansion of the function I f(e”) I in a Fourier series to 
be known. We will not give this formula here in view of its complexity. 

3. CALCULATION OF THE BOUNDARY DERIVATIVES OF PROBLEMS 1 AND 2 FOR 
ALMOST CIRCULAR REGIONS 

Suppose now that the region D is almost the unit circle. By this we mean the following. We 
will assume that 

!ml = 1 + a@, cp), a@, cp) 4 1 (3.1) 

Our purpose is to obtain approximate expressions (accurate to a*) for the boundary deriva- 
tives of problems 1 and 2. 

In this formulation we must obtain an answer which does not contain infinite series. Thus, 
we will neglect expressions of the order of a2 and higher everywhere below. We know that 
In I f(k) I is an harmonic function in the circle B (since the derivative f(c) is not equal to zero 
in B). On the other hand, the following equality holds to within a2 

i.e. the function a is harmonic in the circle B and can be expanded in a Fourier series 

a(r.9) = 7 + ,F, r’ (a, cos kp + b, sin 19) = 2 Alr”‘eb 
l=-c.a (3.2) 

The coefficients a,, b1 and A1 are connected by well-known relations. Suppose A, =I Al Ie”‘. 
Then 

A_, = x,, a[ = 2IA,lcos~,, b, = -2IA,lsine, (I> 0) (3.3) 

We will use the following notation 

t, = (a,co~&-,+b~sin~~)l(k+l), ik =(u,sin&,-b,cos&,)l(k+l) 

The calculation of U,(S) in problem 1. As in Section 2, we will evaluate the integral (2.7). To 
do this we substitute expressions (2.3) and (3.2) into it, and we then transform, using the 
conditions of orthogonality and (3.3)). We obtain 

We pass to the limit in this equality as h + 0, using (2.5). Summing the series we obtain 
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t+ $ fk = j a(r,s,)dr 
k=I 0 

and then, making use of (3.1) and Theorem 1. we obtain 

Iu,(s)l=(l+a(l,~~))-’ f ++i a(r,s,)dr 7 (3.4) 

Calculation of IL(S) in problem 2. Usir ‘! 
integrals. The double integral is evaluated ir 
must use (2.4) instead of (2.3). Then 

\‘ 0 I 

: (1.4) we can evaluate the double and contour 
I the same way as the previous one, except that we 

We pass to the limit in this equality as h + 0, using (2.5) and summing the series 

dr = -) iZ(r,so)dr 
0 

(3.5) 

Here Z(r, (p) is a harmonic function, conjugate to a(r, (p) and such that E(0, cp)= 0. We 
finally obtain 

J(so)=-(l+a(l,~o))-li a(r,so)dr 
0 

(3.6) 

We will now evaluate the contour integral. Using (2.4) (3.2), (3.3) and the orthogonality 
conditions we obtain 

We pass to the limit in this equality as /z -+ 0, using (2.5) and we then use (3.5) and the 
Cauchy-Riemann conditions. We obtain 

11 laa 
‘%) = ~~otm,E,(S,) = -tf’(e’“O)I- j --dr ~lf’(~k))~-’ @l,so) 

o r aso (3.7) 

Using (3.1) and Theorem 2 and combining (3.6) and (3.7) we obtain 

w(s) = (1 +a(l,s,))-’ (3.8j 

Example. Suppose the region D is an ellipse with semiaxes 
[7, p. 378]), that, to within E*, the mapping (2.1) has the form 

z = 6 + l/2(< + q> 

Then, with the same accuracy, it follows from (3.1) that 

b=l and a=l+E. We know (see 

a(r,cp)=~e+~Er*cos2tp, E( T, cp) = g Er2 sin 29 (3.9) 

Substituting the first expression of (3.9) into (3.4) we obtain the solution of problem 1 
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lu,(s)l = l/z -. $E(cos2Q - 1) + O@> 

already known to Saint-Venant. 
In order to obtain a solution of problem 2, we note that, to terms in E*, the ratio 

I D I / I = X+ %E. Substituting the second expression of (3.9) into (3.8) we obtain 

u’(s) = ‘/4sin&-, + @E*) 

Hence, both for the function I u,,(s) I, and for the function U(S) the greatest values are reached 
at the ends of the minor axis of the ellipse, and the smallest values are reached at the ends of 
the major axis. 
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